VOLUME 64, NUMBER 6

PHYSICAL REVIEW LETTERS

5 FEBRUARY 1990

Equilibrium Crystal Shapes and Correlation Lengths:
A General Exact Result in Two Dimensions

Mark Holzer

Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A4 156
(Received | November 1989)

We show that the exact equilibrium crystal shape (ECS) for a wide class of two-dimensional Ising
models can simply be read off from the analytical expression for the bulk free energy: The ECS is given
as the locus of purely imaginary zeros of the “momentum”-space lattice-path propagator. From these
shapes, one may obtain numerically, to arbitrary accuracy, the high-temperature direction-dependent
correlation lengths of the dual system. These exact ECS’s and corresponding correlation lengths were
previously known only for the rectangular, triangular, and honeycomb lattices.
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Equilibrium crystal shapes (ECS’s) have received con-
siderable attention in recent years.! In particular, two-
dimensional (2D) Ising ECS’s are interesting because
exact solutions are possible. Moreover, these exact solu-
tions may be experimentally relevant, since they are, un-
der appropriate conditions, good approximations to the
facet shapes of three-dimensional ECS’s.2 To date, ex-
act solutions for the complete temperature- (7-) depen-
dent ECS exist only for the Ising model on rectangular,?
triangular, and honeycomb lattices.*> These solutions
were obtained from the known high-T correlation lengths
of these lattices® by exploiting a duality relation” which
connects the ECS of the direct lattice .£ with the high-T
(T > Tritical) correlation length of the dual system on
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the dual lattice L*.

In this paper we take a more direct approach, which
combines a grand canonical formulation of the ECS
problem'® with a recent generalization® of the
Feynman-Vdovichenko random-walker method '° of solv-
ing the Onsager'' problem. Surprisingly, we find that a
closed-form, exact equation for the ECS can simply be
read off from the analytical expression for the bulk free
energy for a wide class of Ising models with noncrossing
bonds. The ECS is given as the locus of purely imagi-
nary zeros of the “momentum’ -space lattice-path prop-
agator. More precisely, the central result of this paper
may be stated as follows: If the bulk free energy f7* of
the Ising model on L* can be written in terms of the
q Xq Feynman-Vdovichenko lattice-walk matrix A as

(1)

[where Det(1 — A) is the propagator for lattice paths, and g is finite and in simple cases equal to the coordination num-
ber of the latticel, then the ECS of the dual system on .L, represented in Cartesian coordinates as ¥ (X), is given by

Det{l — A(kx =iprY,k, = —ifAX;exp(—2K;;))} =0, T <T.,

subject to some (weak) conditions to be given below.
Throughout this paper starred (+) quantities refer to the
dual lattice £* and tanhK} =exp(—2K;;).'? In Egs.
(1) and (2), Tr denotes trace, Det denotes determinant,
p=(kgT) ~', where kg is Boltzman’s constant, K;;=BJ;,
is the coupling between sites i and j of £, and A is a con-
stant which controls the volume of the ECS by setting its
overall length scale. To the best of our knowledge all
known exact solutions for the bulk free energy of 2D Is-
ing models are, indeed, of the form (1) and do satisfy the
conditions alluded to.'> The ECS (2) can be inverted via
a Legendre transform!* (inverse Wulff construction'?)
to obtain the interfacial free energy per unit length y(f)
(surface tension) for a macroscopically flat interface of
normal A. The high-T correlation length &*(d) for
correlations in the @ direction on £* are then simply
given by £*(d) =1/8y(d), A-d=0." While this inver-
sion is not generally possible in closed form, it can easily
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be carried out numerically with arbitrary accuracy. The
correlation lengths of 2D Ising models for arbitrary
direction 4 have until now only been known exactly for
the rectangular, triangular, and honeycomb lattices.®
The method we shall use to evaluate the sums over mi-
croscopic configurations which arise in the derivation of
Eq. (2) has a venerable history. The root of this method
may be considered to be an unpublished conjecture by
Feynman which was proved by Sherman'® (the Sherman
theorem). Feynman reinterpreted the seminal work of
Kac and Ward'” on a combinatorial solution of the Ising
model in terms of an identity between lattice-path sums
and the graphical expansion of the Ising model. (The
content of the Sherman theorem is closely related to the
free-fermion point of view of Hurst and Green.'?) Mak-
ing implicit use of the Sherman theorem, Vdovichenko '°
gave an elegant, intuitive solution to the Onsager prob-
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lem, which is now textbook material.'® The first applica-
tion of these methods to Ising interfaces was recently re-
ported by Calheiros, Johannesen, and Merlini.® We
shall utilize this technology to derive Eq. (2).

Consider first the “canonical” formulation of the ECS
problem: The thermodynamic quantity to be calculated
from the microscopic Hamiltonian is the surface tension
y(d). Throughout this paper we take the Ising system to
be defined on an (| N |+1)xR rectangular strip of a
periodic lattice .£, with R tending towards infinity. For
T <T. and zero magnetic field, an interface can be
forced into this system by dividing the boundary of £
into two connected (1D) regions and fixing the spins to
be “up” (+) on one region and “down” (—) on the oth-
er. We shall take this interface to extend from spin
o{o.0) to spin oy a) on the boundary of the dual strip
L* (Fig. 1). With this choice of boundary condition
(+ —), denote the partition function of the system by
ZN a; if all boundary spins are fixed to be up (no inter-
face), denote it by Z **. y(d) is then defined by

By (@)= tim L 1n | 25 ©)
L—oo L z*tt
= lim Lln(o?{)‘o)ovaM))-‘ L s (4)
L—o L E* (@)

where L=(N2+M?) "2 fi=(—M,N)/L, and G=(NV,
M)/L. The duality statement (4) has been derived by a
number of authors’ and forms the basis of the known ex-
act solutions: A calculation of the dual-lattice correla-
tions {oloolv.a)’ in the thermodynamic limit
N,M— oo with i (&) fixed gives y(fi), from which the
ECS is determined via the well-known Wulff construc-
tion. '*

To see what the interface has to do with random walk-
ers, consider the low-T expansions'? of Zy 4 and Z* 7,
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FIG. 1. The boundary conditions considered in this paper il-
lustrated on a rectangular lattice: The strip £ is defined by
the heavy dots and the spins on its boundary are forced to be
either “up” (+) or “down” (—) as shown. Its dual £* is indi-
cated by the grid of dotted lines. The + — boundary condi-
tions force an interface into the system which runs from dual
spin ol.0) to dual spin olv a). The lattice walk shown illus-
trates a term in the sum of Eq. (5).
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expressed in terms of graphs G on the dual lattice £*.
The links of these graphs are the bonds of £* dual to
the broken bonds of £ (i.e., bonds of .L between spins of
opposite sign). Each graph G represents a microscopic
interface configuration and has, therefore, weight
W(G) =ITinksexp( —2K;;). The expansion of Zy 4 con-
tains closed polygons (loops) and open graphs connecting
(0,0) to (V,M). The expansion for Z** contains loops
only. If (O) denotes the sum of W(G) over all single
closed loops, (O~0O) the sum over all pairs of closed
loops, (—) the sum over the open graphs, (——~0)
the sum over open graphs in the presence of single closed
loops, etc., we can write symbolically

Z*tt=140©0)+0©~0)+ -,
Zi i =(—)+(———~0)+(——~0~0)+ - - - .

Instead of evaluating the sums over closed loops, it turns
out to be easier, following Feynman and Vdovichen-
ko,'®!® to sum over closed directed lattice paths. (The
directed links of such lattice walks will be called
“steps.”) Give weight
W(G)=(—1)° [T exp(—2K;;)
steps

to each single directed closed path 6, where S is the
number of self-intersections of the path and the product
is over the steps of the path. The upshot of the Sherman
theorem,'® which holds for any planar embedded lattice
with noncrossing bonds, is that Z tt=4 exp(@), where
(@) denotes the sum of W(G) over all possible G and A
is just Tr(ITinkscoshK¥). The critical point is that the
n-loop term of the directed paths has uncoupled into
(@)"/n1.?° Hence, if (——) denotes the sum over open
graphs which are counted using directed paths weighted
in the same manner as the closed paths of (@), one is led
to expect that (——) uncouples from the (@)’s, so that
ZNw=(—=—)Z**. Calheiros, Johannesen, and Mer-
lini® showed that, indeed, this follows rigorously from the
Sherman theorem by considering the closed-loop expan-
sion with an auxiliary bond J; external to .L* connect-
ing the dual sites (0,0) and (N,M). In the limit as
J¥ — 0, one finds that

Z/\T.;f S —2K;
R (~DSTTe %, (5)
Z (0,0) — (N, M) steps

where the sum is over all paths or lattice walks from
(0,0) to (V,M) (Fig. 1).

Following Refs. 10, 17, and 19, the sums over walks
(5) can now easily be evaluated, at least in the thermo-
dynamic limit. Let {d,}, with u € {1,2,...,q}, be the
set of vectors which correspond to all possible distinct
directed bonds of £*. If L* is a Bravais lattice, g is the
coordination number; otherwise, g is the sum of the coor-
dination numbers for each type of site. Denote by d,(n)
the nth step of the walk. We associate with each change
of direction a phase factor exp(i¢,./2), where ¢,, is the
angle (“of turn”) from d,(n) to d,(n+1), defined such
that |¢,,| =< This keeps track of the parity of self-
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intersections because the product of these phase factors In principle, the boundaries of the lattice should be

over a single closed loop gives —(-1)5 a topological chosen such that u,, =vi,, so that self-intersections are

property of planar embedded loops.!” Let ¥, ,(x,y;n) be properly accounted for; however, in the thermodynamic

the sum over all weighted walks (including the phase limit this is not important, as we can replace

factors) which step onto the origin with d,(0), and n

steps later onto site (x,y) with d,(n). These ¥, (x,y;n) [AIVIFIMIFIEmY ) Vio with Tr A IV HIM T4

then obey a recursion equation which, in the limit as the . . . .

strip width | N | — oo, can be diagonalized via a Fourier If the 2D ECS is .represcnted in Cartesian coordinates

transform to obtain %1 as Y(X), the analytical statement of the Wulff construc-
Wyx(kquy;”+l)-ZAyv(kx,ky)q’vx(kxyky;n)- ©) :)ifor;z: t(;l;f:s a form particularly useful in the derivation

The A,, are the elements of the g Xg matrix A and have of
the form AY(X)=f(s)+AXs; AX=——""=, s

_ _ . o ds
Aulkx kyse " 2K0) me THuglonl2e = du(y — 50 4y, (7)

where k= (k,,k,). The Kronecker & in (7) ensures that where f(s)=y@)(1+s2)"? and a=(—35,1)/(1+5s2) "2

_ay

ax ()

walks cannot immediately backtrack.'®'® The right- Equation (9) is a Legendre transform: In going from
hand side of Eq. (5) can now be written in terms of A as f(s) to Y(X) we pass from a *“canonical” ensemble at

= dkxdky jk,N+k,M) had [AIN I+ 1M1 +14m) 4 fixed macroscopic slope s to a grand *“‘canonical ensem-
ff-,, 42 € mZ—O A HoutVin - ble,” in which all s are allowed and the field variable X

(8) | selects a particular slope s as 9Y/8X. We may, there-
fore, write '8

. 1 1 A R
BKY(X)-—lleTmFln{—F{Tr}exp[—ﬂ[ﬁ—XXx'Zm]}} (10a)
-— lim L ~puxm | 2N
lim 1n§e P } (10b)

where {Tr} denotes the trace over all possible configurations containing an interface extending from (0,0) to (V,M) for
any M. st is the microscopic normal of the bonds dual to broken bonds and points from + to —. The field XX is con-
stant and, therefore, couples only to the normals of open paths from (0,0) to (V,M). Because the net field contribution
depends only on M, the field term of Eq. (10) can be neatly incorporated into A by making the substitution
k, — k, —iprLX. Substituting (8) into (10b) with A =A(k,,k, —ifAX) and summing over m, we obtain

kg = . INI+1M]
> [ . dkye'(k’NH’M)TrA————}, an

o
ALY (X) lNlllrElen{M__w Y

where X must be bounded such that Af— 0 as P— o,

Only the saddle point of the integrand of Eq. (11) con- [z—z,(X)]z —z,(X)]. The roots z,(X) and z,(X) are
tributes to the thermodynamic limit. It is straightfor- real and positive for X € [Xin,Xmax] and T < T,. For a
ward to show that this saddle point occurs when range of the field variable X € [Xz,X5] C [Xmin, Xmax],
Det(1 —A) =0. Thus, in the limit | N | — oo, we can re- z1(X) =1 and z,(X) = 1. Thus, for X € [X4,X;z], Eq.
place TrlA /M 1+IMI/(1 — A)] with 1/Det(1 —A). This (12) is evaluated as BAY(X) = —Inlz,(X)], if N>0,
substitution allows us immediately to sum over M to ob- and as —Inlz,(X)], if N <0. Since the outward normal
tain a delta function 278(k,). After integrating over k, of the interface is i =(—(M)(X),N)/L, N>0 (N <0)
and making the change of variable et =z, Eq. (11) be- corresponds to the “upper (lower) half” of the ECS. If
comes X4#=Xmin and Xg=Xmax, and X € WXpmin, X41U [X5,
. 1 dz LN Xmax], then (by definition) either both or neither of the

Y (X) = - lllm —ﬁln 2 2Dt =) | (12) poles z1,z, lie inside |z| =1. In this case we find that
Nz m ze AP(ky,k, —iBrX) no longer converges for all (ky,ky) as

where A =A(k,,0—iBX) and the contour of integration P— oo, Hence, for X € [Xin,X41U X5, Xmax], the sub-
is counterclockwise around the unit circle |z | =1. stitution A(ky,k,) — A(ky,k, —iprX), which incorpo-
For all Ising models of Ref. 13 for which the exact rates the field term of Eq. (10) into the matrix A, is no
(bulk) solution is known, (12) can be evaluated very longer well founded mathematically. For such X, Eq.
simply: For all these models the propagator Det(1 —A) (10) would, therefore, in principle have to be calculated
is a polynomial in z and 1/z and, for appropriate ori- by first evaluating the integrals for Zx 3/Z** and then
entation of the axis, zDet(1 —A) is of the form performing the sum over M. However, since the ECS of
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any 2D system with short-range forces is smooth'™ for
0<T<T,, it follows from analytical continuity that the
upper half of the ECS must be given by —Inlz;(X)],
and the lower half by —Inlz,(X)], for the entire range
of field X € [Xnin, Xmax). To summarize, we have for
T<T.and Xpin <X < Xmax

—lInzy, if N=0,

ﬁ)‘Y(X)_{—lnzz, M N=0) (13)
which can succinctly be expressed in the form of Eq. (2).
Since Det(1 —A) does not have to be explicitly evalu-
ated, if the bulk free energy for the dual lattice is known
in the form of Eq. (1), we arrive at the promised result
Eq. (2). For the rectangular, triangular, and honeycomb
lattices the ECS’s as obtained from Eq. (2) agree with
those calculated independently®~> via the canonical for-
mulation. A number of new results are obtained im-
mediately by applying Eq. (2) to the known bulk solu-
tions. '3

The results of this paper generalize to free-fermion
models not in the Ising universality class,?' provided that
the ECS problem is well defined. We hope to explore
these cases in a future publication.
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